340 research outputs found

    A Bayesian spatio-temporal model of panel design data: airborne particle number concentration in Brisbane, Australia

    Get PDF
    This paper outlines a methodology for semi-parametric spatio-temporal modelling of data which is dense in time but sparse in space, obtained from a split panel design, the most feasible approach to covering space and time with limited equipment. The data are hourly averaged particle number concentration (PNC) and were collected, as part of the Ultrafine Particles from Transport Emissions and Child Health (UPTECH) project. Two weeks of continuous measurements were taken at each of a number of government primary schools in the Brisbane Metropolitan Area. The monitoring equipment was taken to each school sequentially. The school data are augmented by data from long term monitoring stations at three locations in Brisbane, Australia. Fitting the model helps describe the spatial and temporal variability at a subset of the UPTECH schools and the long-term monitoring sites. The temporal variation is modelled hierarchically with penalised random walk terms, one common to all sites and a term accounting for the remaining temporal trend at each site. Parameter estimates and their uncertainty are computed in a computationally efficient approximate Bayesian inference environment, R-INLA. The temporal part of the model explains daily and weekly cycles in PNC at the schools, which can be used to estimate the exposure of school children to ultrafine particles (UFPs) emitted by vehicles. At each school and long-term monitoring site, peaks in PNC can be attributed to the morning and afternoon rush hour traffic and new particle formation events. The spatial component of the model describes the school to school variation in mean PNC at each school and within each school ground. It is shown how the spatial model can be expanded to identify spatial patterns at the city scale with the inclusion of more spatial locations.Comment: Draft of this paper presented at ISBA 2012 as poster, part of UPTECH projec

    Size-Segregated Particle Number Concentrations and Respiratory Emergency Room Visits in Beijing, China

    Get PDF
    BACKGROUND: The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. OBJECTIVES: The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. METHODS: Data on particle size distributions from 3 nm to 1 mu m; PM10 (PM <= 10 mu m), nitrogen dioxide (NO2), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single-and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. RESULTS: Associations of respiratory ERV with NO2 concentrations and 100-1,000 nm-particle number or surface area concentrations were of similar magnitude-that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles <50 nm were not positively associated with ERV, whereas particles 50-100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO2. CONCLUSIONS: Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO2 concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM10 or particle number concentrations in Beijing.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289065900032&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Environmental SciencesPublic, Environmental & Occupational HealthToxicologySCI(E)37ARTICLE4508-51311

    Deducing in Vivo Toxicity of Combustion-Derived Nanoparticles from a Cell-Free Oxidative Potency Assay and Metabolic Activation of Organic Compounds

    Get PDF
    BACKGROUND: The inhalation of combustion-derived nanoparticles (CDNPs) is believed to cause an oxidative stress response, which in turn may lead to pulmonary or even systemic inflammation. OBJECTIVE AND METHODS: In this study we assessed whether the in vivo inflammatory response-which is generally referred to as particle toxicity-of mice to CDNPs can be predicted in vitro by a cell-free ascorbate test for the surface reactivity or, more precisely, oxidative potency (Ox(Pot),) of particles. RESULTS: For six types of CDNPs with widely varying particle diameter (10-50 nm), organic content (OC; 1-20%), and specific Brunauer, Emmett, and Teller (BET) surface area (43-800 m(2)/g), Ox(Pot) correlated strongly with the in vivo inflammatory response (pulmonary polymorphonuclear neutrophil influx 24 hr after intratracheal particle instillation). However, for CDNPs with high organic content, Ox(Pot) could not explain the observed inflammatory response, possibly due to shielding of the Ox(Pot) of the carbon core of CDNPs by an organic coating. On the other hand, a pathway-specific gene expression screen indicated that, for particles rich in polycyclic aromatic hydrocarbon (PAHs), cytochrome P450 1A1 (CYP1A1) enzyme-mediated biotransformation of bioavailable organics may generate oxidative stress and thus enhance the in vivo inflammatory response. CONCLUSION: The compensatory nature of both effects (shielding of carbon core and biotransformation of PAHs) results in a good correlation between inflammatory response and BET surface area for all CDNPs. Hence, the in vivo inflammatory response can either be predicted by BET surface area or by a simple quantitative model, based on in vitro Ox(Pot) and Cyp1a1 induction

    An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling

    Get PDF
    Ba c k g r o u n d: Ground-level concentrations of ozone (O 3) and fine particulate matter [ ≤ 2.5 µm in aerodynamic diameter (PM 2.5)] have increased since preindustrial times in urban and rural regions and are associated with cardiovascular and respiratory mortality. Objectives: We estimated the global burden of mortality due to O 3 and PM 2.5 from anthropogenic emissions using global atmospheric chemical transport model simulations of preindustrial and present-day (2000) concentrations to derive exposure estimates. Met h o d s: Attributable mortalities were estimated using health impact functions based on longterm relative risk estimates for O 3 and PM 2.5 from the epidemiology literature. Using simulated concentrations rather than previous methods based on measurements allows the inclusion of rural areas where measurements are often unavailable and avoids making assumptions for background air pollution. Res u l t s: Anthropogenic O 3 was associated with an estimated 0.7 ± 0.3 million respiratory mortalities (6.3 ± 3.0 million years of life lost) annually. Anthropogenic PM 2.5 was associated with 3.5 ± 0.9 million cardiopulmonary and 220,000 ± 80,000 lung cancer mortalities (30 ± 7.6 million years of life lost) annually. Mortality estimates were reduced approximately 30 % when we assume

    Ambient Fine Particulate Matter Exposure and Myocardial Ischemia in the Environmental Epidemiology of Arrhythmogenesis in the Women’s Health Initiative (EEAWHI) Study

    Get PDF
    BackgroundAmbient particulate matter (PM) air pollution is associated with coronary heart disease, but the pathways underlying the association remain to be elucidated.MethodsWe studied the association between PM and ischemia among 57,908 Women’s Health Initiative clinical trial participants from 1999–2003. We used the Minnesota Code criteria to identify ST-segment and T-wave abnormalities, and estimated T amplitude (microvolt) from resting, standard 12-lead electrocardiogram (ECG). We used U.S. Environmental Protection Agency’s monitor data to estimate concentrations of PM < 2.5 μm (PM2.5) at geocoded participant addresses over 6 days before the ECGs (lag0 through lag5). We excluded 2,379 women with ECG QRS duration ≥ 120 msec.ResultsOverall, 6% of the remaining 55,529 women (52–90 years of age; 83% non-Hispanic white) had ST abnormalities and 16% had T abnormalities. Lead-specific T amplitude was normally distributed (range of means from −14 to 349 μV). PM2.5 (mean ± SD) averaged over lag0–2 was 14 ± 7 μg/m3. In logistic and linear regression models adjusted for demographic, clinical, temporal, and climatic factors, a 10-μg/m3 increase in lag0–2 PM2.5 was associated with a 4% [95% confidence interval (CI), −3%, to 10%] increase in the odds of ST abnormality and a 5% (95% CI, 0% to 9%) increase in the odds of T abnormality. We observed corresponding decreases in T amplitude in all exam sites and leads except lead V1, reaching a minimum of −2 μV (95% CI, −5 to 0 μV) in lead V3.ConclusionsShort-term PM2.5 exposure is associated with ECG evidence of myocardial ischemia among postmenopausal women. The principal manifestations include subclinical but potentially arrhythmogenic ST–T abnormalities and decreases in T amplitude

    Modification by Influenza on Health Effects of Air Pollution in Hong Kong

    Get PDF
    Background: Both influenza viruses and air pollutants have been well documented as major hazards to human health, but few epidemiologic studies have assessed effect modification of influenza on health effects of ambient air pollutants. Objectives: We aimed to assess modifying effects of influenza on health effects of ambient air pollutants. Methods: We applied Poisson regression to daily numbers of hospitalizations and mortality to develop core models after adjustment for potential time-varying confounding variables. We assessed modification of influenza by adding variables for concentrations of single ambient air pollutants and proportions of influenza-positive specimens (influenza intensity) and their cross-product terms. Results: We found significant effect modification of influenza (p < 0.05) for effects of ozone. When influenza intensity is assumed to increase from 0% to 10%, the excess risks per 10-μg/m 3 increase in concentration of O 3 increased 0.24% and 0.40% for hospitalization of respiratory disease in the all-ages group and ≥ 65 year age group, respectively; 0.46% for hospitalization of acute respiratory disease in the all-ages group; and 0.40% for hospitalization of chronic obstructive pulmonary disease in the ≥ 65 group. The estimated increases in the excess risks for mortality of respiratory disease and chronic obstructive pulmonary disease in the all-ages group were 0.59% and 1.05%, respectively. We found no significant modification of influenza on effects of other pollutants in most disease outcomes under study. Conclusions: Influenza activity could be an effect modifier for the health effects of air pollutants particularly for O 3 and should be considered in the studies for short-term effects of air pollutants on health.published_or_final_versio
    • …
    corecore